જો $\sin \,\theta + \sqrt 3 \cos \,\theta = 6x - {x^2} - 11,x \in R$ , $0 \le \theta \le 2\pi $ હોય તો સમીકરણોના ............. ઉકેલો મળે
એક
બે
અનંત
શૂન્ય
જો $\sin \theta + \cos \theta = \sqrt 2 \cos \alpha $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
અહી $S={\theta \in\left(0, \frac{\pi}{2}\right): \sum_{m=1}^{9}}$
$\sec \left(\theta+(m-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{m \pi}{6}\right)=-\frac{8}{\sqrt{3}}$ હોય તો . . .
સમીકરણ ${2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}$ નું પાલન કરે તેવી $x$ ની કિમત મેળવો.
સમીકરણ $\sqrt 3 \sin x + \cos x = 4$ ના બીજની સંખ્યા . . . . છે.
$‘a’$ ની .............. કિમતો માટે $cos\, 2x + a\, sin\, x = 2a - 7$ ના ઉકેલો શક્ય છે